
Abstract. The evaluation of some spectral moments for
phenylenes is considered. Explicit topological formulae
for the fourth, sixth and eighth moments are derived.
This was achieved by adopting the method of Hall [1],
which was originally applied to benzenoid systems, and
applying it to molecular graphs of phenylenes. It is
shown that the moments considered in this paper can be
expressed in terms of three mutually independent
graphical invariants.
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1 Introduction

Phenylenes are a group of conjugated hydrocarbons
composed of six- and four-membered rings, where the
six-membered rings (hexagons) are adjacent only to
four-membered rings, and every four-membered ring is
adjacent to a pair of hexagons. A phenylene containing
hexagons is called an [h] phenylene. In Fig. 1 some
examples of phenylenes are presented. It is assumed that
the number of four-membered rings of an [h] phenylene
amounts to h-1. It means that structures in which six-
and four-membered rings are linked together in phenyl-
enic super-rings are not considered in the present paper.

The chemistry of phenylenes is rapidly expanding,
owing to the work of Peter Volhardt's research group.
More information on the phenylenes can be found in the
reviews [2±4], as well as in recent papers [5±8]. Recent
developments in the experimental chemistry of phenyl-
enes has challenged a great number of theoretical in-
vestigations [9±18].

One of the main aims of theoreticians is to analyse the
dependence of various physico-chemical properties of
molecules on their structure. The graph theory is often
employed for this purpose [19, 20], because molecular

graphs contain relevant information about the molecular
structure. In Fig. 1 the phenylene examples are also
presented by their corresponding molecular graphs. The
adjacency matrix (A) of the molecular graph consists of
zero diagonal elements and unit o�-diagonal elements
corresponding to the nearest neighbours. The eigenval-
ues of the adjacency matrix, x1; x2; . . . ; xn, form the
spectrum of the respective molecular graph.

The k-th spectral moment of a molecular graph �Mk�
is de®ned as:

Mk �
Xn

i�1
xk

i : �1�

It is well known that Mk can be expressed as:

Mk � Tr Ak� � �2�

where an element Ak
� �

ij is equal to the number of walks
of length k between the vertices i and j. Walks are an
object of interest for many theoretical chemists [21, 22].

The spectral moments of molecular graphs have
found a number of applications in the physical chemistry
of solid state [23±26]. Namely, using a continued frac-
tion technique, the normalized moments were used to
obtain the HMO density of states and other useful
properties for solids. The application of moments in the
theoretical chemistry of conjugated molecules is also
worth noting [1, 27±39].

In all applications of moments it is necessary to un-
derstand how they depend on the molecular structure.
For these reasons an e�ort has been made to establish
topological formulae for spectral moments. Particular
attention has been devoted to benzenoid hydrocarbons
[1, 29, 30, 40±42] and acyclic chains [28, 43]. Many of the
topological formulae established in previous papers have
been used in the theoretical chemistry of conjugated
compounds. In a series of papers [1, 27±35] moments
were used for the estimation of HMO total p-electron
energy and examination of its dependence on molecular
structure. A treatment based on the energy partitioning
via spectral moments was proposed for dealing with
aromaticity of conjugated systems [35, 36].
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Up to now, explicit topological formulae for spectral
moments of phenylenes have not been communicated. In
this paper the evaluation of M4, M6 and M8 for phenyl-
enes is considered.

2 Topological formulae for spectral moments
of phenylenes

Before presenting our main results, we have to determine
some structural details and to ®x our notation. All
symbols used in this paper refer to the graphs of
phenylenes, although we follow the terminology sug-
gested for benzenoid hydrocarbons [44]. Hence, h stands
for the number of hexagons, n for the number of vertices
(n � 6h for the case presented, and m for the number of
edges (m � 8hÿ 2 for the case presented).

There are four types of hexagons in phenylenes that
are distinguishable with respect to their mutual posi-
tions. We use the notation from Gutman and Cyvin [44],
and call the four types L1; L2; A2 and A3. Their de®ni-
tion is clear from Fig. 2. According to this notation
hL1; hL2; hA2 and hA3 represent the numbers of hexagons
of types L1; L2;A2 and A3, respectively.

In Fig. 2, a structural detail of the perimeter ± a bay
of phenylenes ± is also depicted. In the following text this
structural feature is simply called a bay. The number of
bays is denoted by b.

Because of the pairing theorem, all odd moments of
bipartite graphs (and therefore of all phenylenes) are
equal to zero.

M2k�1 � 0 k � 0; 1; 2; . . . :

For this reason, only the even moments of phenylenes
M2k; k � 0; 1; 2; . . . are considered in this paper.

The zeroth and the second moments of all graphs are
given by long and well known formulae:

M0 � n�� 6h for the graphs of phenylenes�
M2 � 2m�� 16hÿ 4 in the same case�:
We have contributed the equations below:

M4 � 80hÿ 44 ; �3�
M6 � 484hÿ 352� 6b ; �4�
M8 � 3136hÿ 2636� 128b� 16hA3 : �5�

3 Method for deriving topological formulae
for spectral moments of phenylenes

Equation (2) can obviously be put into the form:

M2k � Tr�B�2 �6�
where B denotes the symmetric matrix Ak. Since the trace
of the square of a symmetric matrix is equal to the sum
of the squares of all elements of that symmetric matrix,
Eq. (6) can be expressed as:

M2k �
X

i;j

�Bij�2 : �7�

On the basis of Eq. (7) the 2k-the moment can be
deduced from the matrix B (i.e. Ak) by squaring each
element and adding them together. For such a calcula-
tion one has to know which numbers appear as the
elements of the matrix B, and how many times. If bk;w
denotes how many times a certain value w appears as an
element of matrix B, then:

M2k �
X1
w�1

bk;w � w2 : �8�

Since an element Bij is equal to the number of walks of
length k between the vertices i and j, it follows that bk;w
represents the number of structural fragments of phen-

Fig. 1. Some examples of phenylenes presented by their KekuleÂ
structures and the corresponding molecular graphs

Fig. 2. Types of hexagons and a bay region of phenylenes
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ylenes enabling w distinct walks of length k. On this
basis, the problem of deriving the 2k-th spectral
moments of phenylenes is reduced to recognition and
enumeration of structural details that enable walks of
length k.

We resolve this problem for k � 2; 3 and 4 in the
following manner: all possible fragments of phenylenes
that provide walks of length k (i.e. 2, 3 and 4) are con-
sidered, and classi®ed according to their w values. Now
w can assume only certain values (which, of course,
di�er for di�erent values of k) so we have to determine
the coe�cients bk;w. Here it turned out to be pro®table to
identify the vertices from which w distinct walks of
length k started. Then the next part of the task involved
enumeration of the vertices. We observed that particular
attention should be paid to various types of hexagons
and some structural details (Fig. 2).

4 Evaluation of M4

Structural details enabling walks of length 2, classi®ed
according to their w values, are presented in Fig. 3. It is
shown that w can only assume the values of 1, 2 and 3.

The structural detail that provides three distinct
walks of length 2 is a vertex of degree 3. These are closed
walks, the corresponding matrix elements of which lie on
the diagonal of A2. On the basis of this, b2;3 is obviously
given by the expression

b2;3 � 4�hÿ 1� : �9�
Every vertex of degree 2 enables two di�erent closed
walks of length 2. From the vertices of degree 3, two
walks of length 2 also start. It is now clear that

b2;2 � n � 6h : �10�
As for b2;1, three types of vertices are distinguishable
(Fig. 4). All designated vertices are the beginning parts
of the fragments providing one walk of length 2, where

vertices marked by heavy dots, asterisks and triangles
are involved in one, two and three such fragments,
respectively. (A similar convention is also used in Figs. 6
and 7, where heavy dots, asterisks and triangles repre-
sent the vertices where one, two or three fragments,
enabling walks of length 3 and 4, start.) The hexagons of
the L1-type possess two vertices marked by heavy dots
and four vertices marked by asterisks. Therefore, 16
distinct walks of length 2 start from the vertices of the
L1-type hexagons of phenylenes. Since the arrangement
of the vertices of di�erent types is clear from Fig. 4, we
further conclude that 20, 20 and 24 walks of length 2
start from the vertices of types L2; A2 and A3, respec-
tively. It is obvious that b2;1 can be expressed as:

b2;1 � 16hL1 � 20hL2 � 20hA2 � 2� 24hA3 :

As hL1 � hA3 � 2 the formula above can be straight-
forwardly transformed into

b2;1 � 20hÿ 8 : �11�
By substituting Eqs. (9±11) back into (8) we arrive at
Eq. (3).

5 Evaluation of M6 and M8

Following similar considerations, it was found that for
k � 3 w assumes the values: 1, 2, 3, 4, 5 and 6, whereas
for k � 4 w assumes the values: 1, 2, 3, 5, 6, 7, 8, 9, 14, 16
and 17. The corresponding coe�cients b3;w and b4;w obey
the formulae:

b3;1 � 12�hÿ 1� � 2b ; �12�
b3;2 � 14hÿ 8 ; �13�
b3;3 � 6hL1 � 2hA2 ; �14�
b3;4 � 4�hÿ hA3� � 4hL2 ; �15�
b3;5 � 2b ; �16�
b3;6 � 8�hÿ 1� ; �17�

b4;1 � 12hÿ 16� 4hA3 ; �18�
b4;2 � 4�hÿ 1� � 4b ; �19�
b4;3 � 8�hÿ 1� ; �20�
b4;5 � 4hL1 ; �21�
b4;6 � 6hL1 � 4hA2 ; �22�
b4;7 � 6hL1 � 12hL2 � 6hA2 ; �23�
b4;8 � 10hÿ 2b� 2hA3 ÿ 12 ; �24�
b4;9 � 4b ; �25�
b4;14 � 4�hÿ 1� ; �26�
b4;16 � 4�hÿ 1� ÿ 2b ; �27�
b4;17 � 2b : �28�

Fig. 3. Structural fragments enabling walks of length 2. The vertices
where a certain walk starts and ends are marked by heavy dots

Fig. 4. An example for evaluation of M4. Heavy dots, asterisks and
triangles represent the vertices where one, two or three fragments
enabling one walk of length 2 start.
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By substituting Eqs. (12±17) as well as (18±28) into Eq.
(8), topological formulae for M6 and M8 are obtained
[Eqs. (4) and (5)].

As examples we present the details concerned with
deriving b3;2; b3;5 and b3;6, as well as b4;2; b4;6 and b4;14. In
Fig. 5 structural fragments of phenylenes that enable
two, ®ve and six walks of length 3, and two, six and 14
walks of length 4 are depicted. As an illustration we
present the ®ve walks of length 3, and the 14 walks of
length 4.

k � 3 w � 5 : 2-1-2-4, 2-3-2-4, 2-4-2-4, 2-4-5-4, 2-4-6-4,
k � 4 w � 14 : 9-10-9-8-11, 9-10-9-13-11, 9-8-7-8-11, 9-

8-11-8-11, 9-8-11-12-11, 9-8-11-13-11, 9-8-9-8-11,
9-8-9-13-11, 9-13-14-13-11, 9-13-11-13-11, 9-13-
11-12-11, 9-13-9-13-11, 9-13-11-8-11, 9-13-9-8-11.

Structural fragments of phenylenes enabling ®ve walks
of length 3 are located at the bays, so that each bay
provides two such fragments. On the basis of this, the
dependence of b3;5 on molecular structure is established
by Eq. (16). A vertex of degree 3 is a starting point for
two structural details enabling six walks of length 3.
Therefore, the coe�cient b3;6 is equal to twice the
number of vertices of degree 3, which is expressed by the
Eq. (17).

In Fig. 6 the examples of phenylenes are given, il-
lustrating the types of vertices that are distinguished in
enumeration of structural details providing two walks of
length 3 and 4. It is shown that 10, 14, 14 and 18 walks
of length 3 (as well as two, four, eight and 18 walks of
length 4) start from the vertices of the hexagons of
L1; L2; A2 and A3 types, respectively. This provides a
justi®cation to express b3;2 and b4;2 in the form:

b3;2 � 10hL1 � 14�hL2 � hA2� � 18hA3 � 14hÿ 8 ;

b4;2 � 2hL1 � 4hL2 � 8hA2 � 18hA3 � 4h� 4bÿ 4 :

Fourteen walks of length 4 are accomplished between
each pair of nonadjacent vertices of four membered rings
(Eq. 26). Structural fragments providing six walks of
length 4 can be found in hexagons of the type L1 and A2

(six and four such fragments), this is clearly demon-
strated in Fig. 6.

6 Conclusions

Using the method of Hall [1], topological formulae for
the fourth, sixth and eighth spectral moments of
phenylenes are deduced in this paper. These formulae
express the dependence of spectral moments on the
molecular structure of phenylenes. The moments up to
M4 depend solely on the size of the molecule. The
number of bays exerts in¯uence both on M6 and M8. The
number of hexagons of the A3-type, i.e. the number of
branchings in a molecule, is also a factor that plays a
role in the structure dependence for M8. All three of the
mentioned graphical invariants can be easily deduced
from molecular graphs of phenylenes.

It is worth noting that there is a remarkable similarity
between the expressions for the moments of phenylenes
and those for benzenoid systems [41, 42]. This is not the
®rst resemblance observed between phenylenes and
benzenoid hydrocarbons, in the study of the dependence
of physico-chemical properties on molecular structure
[17, 18].
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